Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives.
نویسندگان
چکیده
High efficient and sustainable utilization of water-based lubricant is essential for saving energy. In this paper, a kind of layered double hydroxide (LDH) nanoplatelets is synthesized and well dispersed in water due to the surface modification with oleylamine. The excellent tribological properties of the oleylamine-modified Ni-Al LDH (NiAl-LDH/OAm) nanoplatelets as water-based lubricant additives are evaluated by the tribological tests in an aqueous environment. The modified LDH nanoplatelets are found to not only reduce the friction but also enhance the wear resistance, compared with the water-based cutting fluid and lubricants containing other particle additives. By adding 0.5 wt% LDH nanoplatelets, under 1.5 GPa initial contact pressure, the friction coefficient, scar diameter, depth and width of the wear track dramatically decrease by 83.1%, 43.2%, 88.5% and 59.5%, respectively. It is considered that the sufficiently small size and the excellent dispersion of NiAl-LDH/OAm nanoplatelets in water are the key factors, so as to make them enter the contact area, form a lubricating film and prevent direct collision of asperity peaks. Our investigations demonstrate that the LDH nanoplatelet as a water-based lubricant additive has a great potential value in industrial application.
منابع مشابه
Tuning Tribological Performance of Layered Zirconium Phosphate Nanoplatelets in Oil by Surface and Interlayer Modifications
Two-dimensional (2D) inorganic layered nanoplatelets exhibit superior lubricating properties in both solid states and oil dispersions. In this paper, we have systematically investigated the effects of surface and interlayer modifications on the tribological performance of layered α-zirconium phosphate (ZrP) nanoplatelets in mineral oil. The pristine layered ZrP nanoplatelets were first reacted ...
متن کاملWS2 Nanoparticles - Potential Replacement for ZDDP and Friction Modifier Additives
In high-pressure, high-temperature sliding contacts, WS2 nanoadditives react with the metal substrate to generate 100+ nm chemical tribofilms with a layered structure and excellent tribological properties. The friction, wear and micromechanical properties of WS2 tribofilms are compared with those of tribofilms formed by the zinc dialkyldithiophosphate (ZDDP) antiwear additive and ZDDP-organic f...
متن کاملAlkyl Polyglucosides as Components of Water Based Lubricants
Water can be used as an ecological lubricant base if it is possible to select additives which can beneficially modify its tribological and corrosion properties. Additionally, those additives should not be harmful to human health and the natural environment. These conditions limit or even eliminate the possibility for the application of the additives used in traditional oil bases as they are ins...
متن کاملEvaluation of the Efficiency of Double Aluminum-Magnesium Layered Nano-Hydroxide in Removal of Pharmaceuticals from Aquatic Solutions and Determination of Optimal Adsorption
Background: Antibiotics and their metabolites are known as dangerous non-degradable substances that potentially remain after the wastewater treatment process. Therefore, it is necessary to remove these compounds from aqueous solutions. This study aimed to use layered double nano-hydroxides to remove carbamazepine, cephalexin, and ciprofloxacin. Methods: In this experimental study the charact...
متن کاملThe Lubrication Ability of Ionic Liquids as Additives for Wind Turbine Gearboxes Oils
The amount of energy that can be gained from the wind is unlimited, unlike current energy sources such as fossil and coal. While there is an important push in the use of wind energy, gears and bearing components of the turbines often fail due to contact fatigue, causing costly repairs and downtime. The objective of this work is to investigate the potential tribological benefits of two phosphoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016